Coordination of adenosylmethionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: a Mössbauer spectroscopic study.
نویسندگان
چکیده
Pyruvate formate-lyase activating enzyme (PFL-AE) generates the catalytically essential glycyl radical of PFL. It is a member of the so-called "radical-SAM superfamily" of enzymes that use a [4Fe-4S] cluster and S-adenosylmethionine (AdoMet or SAM) to catalyze diverse radical-mediated reactions. Evidence suggests that this class of enzymes operate by common initial steps involving the generation of an AdoMet-derived adenosyl radical intermediate, of which the mechanism remains unresolved. The three-cysteine CX3CX2C cluster-binding motif common to all members of this superfamily suggests a unique Fe site in the [4Fe-4S] cluster, which presumably interacts with AdoMet to effect the reductive cleavage and radical generation. Here we employ a dual-iron-isotope (56Fe/57Fe) approach to demonstrate the existence of a unique Fe site in the [4Fe-4S] cluster of PFL-AE by Mössbauer spectroscopy. Coordination of AdoMet to this unique Fe site was made evident by the observation of a substantial increase in the isomer shift (delta) of the Mössbauer spectrum associated with the unique Fe site: delta = 0.42 mm/s in the absence of AdoMet increases to delta = 0.72 mm/s in the presence of AdoMet. Further, the Mössbauer data show that the binding of AdoMet to the unique Fe site occurs in the [4Fe-4S]2+ state, prior to the injection of the reducing equivalent required for catalysis. This observation indicates that AdoMet coordination is a necessary prerequisite to adenosyl radical generation.
منابع مشابه
Conversion of 3Fe-4S to 4Fe-4S Clusters in Native Pyruvate Formate-Lyase Activating Enzyme: Mössbauer Characterization and Implications for Mechanism
Pyruvate formate-lyase activating enzyme utilizes an iron-sulfur cluster and S-adenosylmethionine to generate the catalytically essential glycyl radical on pyruvate formate-lyase. Variable-temperature (4.2200 K) and variable-field (0.05-8 T) Mössbauer spectroscopy has been used to characterize the iron-sulfur clusters present in anaerobically isolated pyruvate formate-lyase activating enzyme an...
متن کاملPyruvate formate-lyase activating enzyme: elucidation of a novel mechanism for glycyl radical formation.
Pyruvate formate lyase activating enzyme is a member of a novel superfamily of enzymes that utilize S-adenosylmethionine to initiate radical catalysis. This enzyme has been isolated with several different iron-sulfur clusters, but single turnover monitored by EPR has identified the [4Fe-4S](1+) cluster as the catalytically active cluster; this cluster is believed to be oxidized to the [4Fe-4S](...
متن کاملAn anchoring role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme.
Pyruvate formate-lyase activating enzyme (PFL-AE) generates the catalytically essential glycyl radical on pyruvate formate-lyase via the interaction of the catalytically active [4Fe-4S]+ cluster with S-adenosylmethionine (AdoMet). Like other members of the Fe-S/AdoMet family of enzymes, PFL-AE is thought to function via generation of an AdoMet-derived 5'-deoxyadenosyl radical intermediate; howe...
متن کاملSpectroscopic approaches to elucidating novel iron-sulfur chemistry in the "radical-Sam" protein superfamily.
Electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and Mössbauer spectroscopies and other physical methods have provided important new insights into the radical-SAM superfamily of proteins, which use iron-sulfur clusters and S-adenosylmethionine to initiate H atom abstraction reactions. This remarkable chemistry involves the generation of the extremely reactive 5'...
متن کاملStructural studies of the interaction of S-adenosylmethionine with the [4Fe-4S] clusters in biotin synthase and pyruvate formate-lyase activating enzyme.
The diverse reactions catalyzed by the radical-SAM superfamily of enzymes are thought to proceed via a set of common mechanistic steps, key among which is the reductive cleavage of S-adenosyl-L-methionine (SAM) by a reduced [4Fe-4S] cluster to generate an intermediate deoxyadenosyl radical. A number of spectroscopic studies have provided evidence that SAM interacts directly with the [4Fe-4S] cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 124 6 شماره
صفحات -
تاریخ انتشار 2002